Measurement of solid-state optical refrigeration by two-band differential luminescence thermometry
نویسندگان
چکیده
We present a non-contact optical technique for the measurement of laser-induced temperature changes in solids. Two-band differential luminescence thermometry (TBDLT) achieves a sensitivity of 7 mK and enables a precise measurement of the net quantum efficiency of optical refrigerator materials. The TBDLT detects internal temperature changes by decoupling surface and bulk heating effects via time-resolved luminescence spectroscopy. Several Yb3+-doped fluorozirconate (ZrF4–BaF2–LaF3–AlF3–NaF–InF3, ZBLANI) glasses fabricated from precursors of varying purity and by different processes are analyzed in detail. A net quantum efficiency of 97.39±0.01 % at 238 K (at a pump wavelength of 1020.5 nm) is found for a ZBLANI:1% Yb3+ lasercooling sample produced from metal fluoride precursors that were purified by chelate-assisted solvent extraction and dried in hydrofluoric gas. In comparison, a ZBLANI:1% Yb3+ sample produced from commercialgrade metal fluoride precursors showed pronounced laser-induced heating that is indicative of a substantially higher impurity concentration. The TBDLT enables rapid and sensitive benchmarking of laser-cooling materials and provides critical feedback to the development and optimization of high-performance optical cryocooler materials. © 2010 Optical Society of America OCIS codes: 160.5690, 300.2530, 300.6430.
منابع مشابه
Infrared Thermopile Temperature Measurement Technique in Microwave Heating Systems
Temperature measurement in microwave systems is essential for thermally driven processes, namely, catalytic reactions and ceramic sintering. Although, the application of direct thermometry methods, namely, thermocouples, have been commonly articulated in the available literature, however, contacted temperature measurement mechanisms have aroused concerns associated with the disruption of the el...
متن کاملModel of laser-induced temperature changes in solid-state optical refrigerators
We present an efficient and numerically stable method to calculate time-dependent, laser-induced temperature distributions in solids and provide a detailed description of the computational procedure and its implementation. This study combines the two-dimensional heat equation with laser-induced heat generation and temperature-dependent luminescence. The time-dependent optical response of a syst...
متن کاملSolid State Process for Preparation of Nickel Oxide Nanoparticles: Characterization and Optical Study
In the present work, we report preparation of NiO nanoparticles with well-defined plate morphology by solid-state reaction of NiCl2∙6H2O and the Schiff base ligand N,N′-bis-(3-methoxysalicylidene)benzene-1,4-diamine), as a novel precursor via solid state thermal decomposition method. This method is a simple and environmentally friendly for preparing t...
متن کاملLocal laser cooling of Yb:YLF to 110 K.
Minimum achievable temperature of ~110 K is measured in a 5% doped Yb:YLF crystal at λ = 1020 nm, corresponding to E4-E5 resonance of Stark manifold. This measurement is in excellent agreement with the laser cooling model and was made possible by employing a novel and sensitive implementation of differential luminescence thermometry using balanced photo-detectors.
متن کاملEnhanced luminescence of Er+3-doped Zinc-Lead-Phosphate Glass embedded SnO2 nanoparticles
Introduction of the nanoparticles in the bulk glass received a large interest due to their versatile application. The composition of Er+3-doped Zinc-Lead-Phosphate glass samples are prepared by melt-quenching technique. The structural and optical properties of phosphate glass have been examined by x-ray diffraction, fie...
متن کامل